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Abstract: Genetically encoded cationic anti-microbial peptides (AMPs) are essential components of the ancient and non-specific
innate immune system, which is the principal defence mechanism of all species of life, with the primary role to kill infectious
microorganisms. Amphibian skin is one of the richest natural sources of such molecules, which are produced by holocrine-type
dermal glands and released upon stimulation. This review highlights the attractive and unique structural/functional properties of
temporins and bombinins H, two families of short and mildly cationic peptides, isolated from the skin of frogs belonging to Rana
and Bombina genera, respectively. Beside improving our knowledge on the role of AMPs in the regulation of the innate immunity,
the biological significance of the existence of multiple forms of a prototypic peptide sequence within the same organism and the
implication of short peptides in the endotoxin neutralization, these two classes of AMPs can be also considered as valid candidates
for the design of novel anti-infective and anti-sepsis drugs. Copyright  2007 European Peptide Society and John Wiley & Sons,
Ltd.
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INTRODUCTION

Ribosomally synthesized anti-microbial peptides
(AMPs), comprising approximately 10–50 amino acid
residues, are widely distributed in nature, being pro-
duced by unicellular microorganisms, plants and ani-
mals, including humans, as part of their first line of
defence [1–4]. To date, hundreds of these gene-encoded
peptides have been identified in different biological
sources [5–7], proving their prominence in the innate
immune system of all living organisms. In addition to
their ability to rapidly protect the host against infections
from a broad spectrum of pathogens and to limit the
induction of microbial resistance [8], AMPs from higher
eukaryotes also act as intercellular signalling molecules
and coordinate the innate and adaptive host defence
responses [9,10]. Therefore, they are also named ‘host
defence peptides’ [11].

Despite substantial variations in their chain length
and structure, most AMPs do possess: (i) a net positive
charge and (ii) a potential to adopt amphipathic α-helix
and/or β-sheet structures (i.e. structures with separate
hydrophobic and hydrophilic faces), upon interaction
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with the phospholipid membrane of the target cell.
These two attributes are crucial for their ability to
interact with a biological membrane in order to exert
their activity [12,13].

Mode of action studies have shown that several
AMPs physically permeate the cell membrane, causing
damage hard to fix, rather than acting via interaction
with specific targets, as in the case of commonly
used drugs, which make it easy for the pathogen to
acquire resistance [14]. However, numerous peptides
have been found to cause profound intracellular effects
(e.g. inhibition of DNA, protein or cell wall synthesis
and enzymatic activity) [3,15]) and to induce changes
in the gene expression levels of microorganisms, when
exposed to their sub-inhibitory concentrations [16].
Overall, AMPs are considered as excellent candidates
to augment our knowledge on the organization of the
innate immunity; in addition, they can also be used
as promising templates for the development of novel
small therapeutic agents, urgently needed because of
the growing resistance of microbes to the available
antibiotics [8,17]. It is therefore important to support
and stimulate both scientific and application-oriented
interests in such molecules.

ANTI-MICROBIAL PEPTIDES FROM FROG SKIN

Skin secretions of Anuran amphibians are an extraor-
dinary rich source of biologically active substances,
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many of which are very similar to mammalian neu-
ropeptides and hormones, as indicated by the pioneer-
ing work of the Italian pharmacologist V. Erspamer
[18–21]. The first report on the occurrence, in amphib-
ian skin, of peptides with anti-microbial activities
dates back to 30 years, when Csordas and Michl
referred to bombinin [22]. Nevertheless, it has been
only since the 1980s, when Michael Zasloff isolated
magainins from Xenopus laevis [23], that many pep-
tide antibiotics from different amphibian species have
been isolated and examined in detail, so that nowa-
days amphibian skin is among the richest natural
sources of such molecules (see an updated list at:
http://www.bbcm.univ.trieste.it/∼tossi/pag1.htm)

AMPs are produced and stored within granules of
serous glands, which are located mainly in the skin of
the dorsal region, and innervated by sympathetic fibres
[24]. Adrenergic stimulation of myocytes surrounding
the glands gives rise to a synchronous discharge
of their content with a holocrine mechanism. As a
result, secretions contain not only AMPs, but also
cytosolic components and intact polyadenylated mRNAs
encoding the peptides [25].

Similar to other AMPs of animal origin, amphibian
AMPs are synthesized as large inactive precursors and
then converted to the final product, upon suitable
proteolytic cleavage. Earlier reports have demonstrated
that AMPs from the granules of the serous dermal
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Table 1 Primary structure of temporins

Temporin Frog
species

Sequence Reference

A R.temporaria FLPLIGRVLSGIL–NH2 42

B ’’ LLPIVGNLLKSLL–NH2 42

C ’’ LLPILGNLLNGLL–NH2 42

D ’’ LLPIVGNLLNSLL–NH2 42

G ’’

’’

FFPVIGRILNGIL–NH2 42

H ’ LSP—NLLKSLL–NH2 42

K ’’

’’

LLP—NLLKSLL–NH2 42

L ’ FVQWFSKFLGRIL–NH2 42

Ala Amolopsloloensis FLPIVGKLLSGLSGLL–NH2 43

1Ara R.areolata FLPIVGRLISGLL–NH2 44

1Aua R.auroraaurora FLPIIGQLLSGLL–NH2 45

1Bya R.boylii FLPIIAKVLSGLL–NH2 46

1Ca R.clamitans FLPFLAKILTGVL–NH2 47

1Cb R.clamitans FLPLFASLIGKLL–NH2 47

1Ec R.esculenta FLPVIAGLLSKLF–NH2 48

1Ga R.grylio SILPTIVSFLSKVF–NH2 49

1Gb ’’ SILPTIVSFLSKFL–NH2 49

GH Hylaranaguentheri FLPLLFGAISHLL–NH2 50

1Hka R.heckscheri SIFPAIVSFLSKFL–NH2 51

1Ja R.japonica ILPLVGNLLNDLL–NH2 52

1La R.luteiventris VLPLISMALGKLL–NH2 41

1Lb ’’ NFLGTLINLAKKIM–NH2 41

1Lc ’’ FLPILINLIHKGLL–NH2 41

1M R.muscosa FLPIVGKLLSGLL–NH2 53

1Oa R.ornativentris FLPLLASLFSRLL–NH2 54

1Od ’’ FLPLLASLFSGLF–NH2 54

1Ola R.okaloosae FLPFLKSILGKIL–NH2 51

1Olb ’’ FLPFFASLLGKLL–NH2 51

1P R.pipiens FLPIVGKLLSGLL–NH2 41

1Pla R.palustris FLPLVGKILSGLI–NH2 55

1Pra R.pirica ILPILGNLLNGLL–NH2 56

1Tga R.tagoi FLPILGKLLSGIL–NH2 57

1TSb R.tsushimensis FLPLLGNLLNGLL–NH2 58

1Va R.virgatipes FLSSIGKILGNLL–NH2 59

1Vb ’’ FLSIIAKVLGSLF–NH2 59

1VE R.versabilis FLPLVGKILSGLI–NH2 60

Basic and acidic residues are indicated by red and blue letters, respectively. Gaps (-) are inserted to maximize identities.

glands of Rana and Bombina genera are inducibly
expressed in response to microbial challenge [26],
and that their promotor regions are regulated by
the NF-κB/IκBα machinery [27], which is tightly
conserved throughout the zoological phyla from insects
to mammals [28–30].

Altogether, frogs are a good model system to study
the in vivo role of AMPs in vertebrates, and various
studies have highlighted their functional importance
in guarding the producer-hosts from infections and
in keeping control of their natural flora [26,31]. All
frog species are endowed with their own unique set
of AMPs, constituting families of 2–50 closely related
members [32], but very little is known about the
biological significance of the existence of multiple
forms of a prototypic peptide sequence within the

same organism. The main families of structurally
similar peptides encompass bombinins and bombinins
H from the European toads Bombina variegata and
Bombina orientalis [33–36]; magainins from the African
clawed frog Xenopus laevis [23], dermaseptins from the
South American arboreal frog Phyllomedusa sauvagii
[37,38], and those from the Rana genus (e.g. brevinins,
ranalexins, ranatuerins, esculentins and temporins)
[32,39–42]. Do the homologous peptides work in
concert? The answer to this question will be addressed
in the next paragraphs.

With the aim to give a contribution to better
understand how Nature equipped each animal with an
accurate fast-operating protection mechanism, and to
open additional roads for the future design of new anti-
infective compounds with expanding properties, this
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review focuses on the two attractive families of small-
sized and mild cationic AMPs from frog skin: temporins
and bombinins H, isolated from Rana and Bombina
species, respectively.

TEMPORINS

Structural Characteristics

Initially identified in 1996 in the skin secretion of the
European red frog Rana temporaria [42], temporins
were then purified from frogs of Northern American and
Eurasian origin. Temporins are among the smallest
amphipathic α-helical AMPs found in nature to date
(10–14 amino acids, except the 16-residue temporin-
ALa, from the Chinese torrent frog Amolops loloensis
[43]) and with a low net positive charge at neutral
pH, ranging from 0 to +3 (Table 1). Indeed, besides a
few isoforms devoid of basic or acidic amino acids (net
charge +1, due to the free N-terminal amino group)
and temporin-1Ja, bearing an aspartic acid (net charge
0), all the remaining members contain only a single
or a double (in temporins L, -1Lb and -1Lc) positively
charged residue (Table 1).

Unlike the majority of Ranidae AMPs such as
brevinins, ranalexins, ranatuerins and esculentins
[24,32], temporins lack the C-terminal heptapeptide
ring, stabilized by a disulphide bridge, and are amidated
at their carboxyl end, as a result of a post-translational
enzymatic reaction [61].

Their precursors are characterized by a 22-residue
signal peptide, which is remarkably similar to that
present in the precursors of other AMPs from Rana
genus [40,62] and in those of the opioid and anti-
fungal peptides from the skin of frogs of the subfamily
Phyllomedusinae [63]. The signal peptide is then
followed by an acidic ‘spacer’, ending with a convertase
processing domain [64], and preceding a single copy of
the mature peptide. Presumably, all these molecules
evolved through dissemination and mutations of a
common ancestor gene.

For the time being, temporins represent the largest
family of AMPs (more than 50 members [65]), and
up to 10 isoforms have been extracted from a
single specimen. The physiological relevance of their
simultaneous presence is discussed below.

Functional Features

Temporins are particularly active toward Gram-
positive bacterial strains, including methicillin- and
vancomycin-resistant staphylococci and enterococchi
(minimal inhibitory concentrations (MICs) ranging from
2.5 to 20 µM [32,66,67]) and Candida species, without
being toxic on non-cancerous mammalian cells. How-
ever, an exception is given by temporin L (net charge

+3), being highly active on Gram-positive and Gram-
negative bacteria, erythrocytes and cancer cells [68] and
capable of synergizing with β-lactam antibiotics [69] as
well as temporin isomers (see below). Lately, also the
longer temporin-ALa was shown to be equally effec-
tive on both the Gram-positive Staphylococcus aureus
and the Gram-negative Escherichia coli, with MICs of 2
and 3 µg/ml, respectively [43]. Overall, both the pep-
tide’s net positive charge and length are critical factors
in determining the anti-microbial efficacy of tempo-
rins [70]. Of benefit is the fact that two members of
this family, temporins A and B, exhibit potent anti-
parasitic activity on the insect (promastigote) and the
mammalian intracellular stage (amastigote) of Leishma-
nia protozoa, which are responsible for severe parasitic
infections in vertebrates, including humans [71]. The
two peptides have a similar effect against promastig-
otes, with an LC50 value (the peptide concentration
required to inhibit 50% of the 3-(4,5-dimethylthiazol-
2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction
compared to that in the untreated parasites) equal to
8.5 µM. Note that contrary to those few natural AMPs
with anti-parasitic properties, temporins preserve activ-
ity against the more resistant morphological stage of
the parasite, the amastigote, with temporin B being
the strongest one. In addition, temporins do not dam-
age the host cell for amastigotes (the macrophage) at
doses that are lethal for the intracellular parasites
[71].

Target selectivity of temporins, as well as that
of many other AMPs, is not clear. It is governed
not only by the physico-chemical characteristics of
the peptide (sequence, charge distribution, oligomeric
state, amphipathicity and helicity) but also by the
type of the target cell surface and its metabolism.
It is worthwhile to emphasize that a significant
anti-bacterial activity against Gram-negative bacte-
ria can be manifested also by temporins A and
B, when each peptide is combined with a sub-
inhibitory concentration of temporin L [72]. Interest-
ingly, this synergistic effect is more pronounced against
Aeromonas hydrophila, an opportunistic pathogen liv-
ing in healthy frogs, but capable of causing high
mortality in amphibian populations, by inducing dis-
eases such as the natural outbreaks of ‘red leg’ [73].
This bacterium, which has been found to be resis-
tant to several AMPs from frog skin, such as mag-
ainin I, magainin II, PGLa, CPF, ranalexin and der-
maseptin [73] and to several conventional antibiotics
[74], is also responsible for a variety of infections in
humans, especially in immunocompromised individu-
als [75,76].

In light of the different target cell specificity and
the synergistic action of temporins, the occurrence
of structurally related peptides within the same
organism should confer the animal a better shield
to either combat a broad array of invading noxious
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microorganisms, or prevent infections from those
microbes belonging to the natural flora, without
harming the host. However, further non-anti-microbial
functions might support the reason for the coexistence
of homologue peptides; indeed, temporins are not
only anti-infective molecules, as multiple biological
properties related to host defence, which will not be
presented in this paper, have been demonstrated [70].

Mechanism of Action Underlying the Anti-microbial
Activity and the Synergistic Effect of Temporins

How do these peptides kill microbes? The selectivity
of a huge number of cationic AMPs towards bacte-
ria is generally attributed to their higher affinity to
the negatively charged bacterial membranes [77], com-
pared with those of eukaryotic cells, which are rich
in sterols and zwitterionic phospholipids [13]. Peptide
molecules initially bind electrostatically to the mem-
brane, which stabilizes their amphipathic structure
required for the subsequent membrane perturbation
[12,13]. However, before reaching the cytoplasmic mem-
brane, the peptides need to cross the microbial wall,
which, in Gram-negative strains, is surrounded by
a second membrane, consisting primarily of anionic
lipopolysaccharides (LPS, or endotoxins) [78]. This
outer membrane is a barrier against temporins and
interferes with the uptake process of the peptide by
inducing its oligomerization. This makes it difficult for
the oligomers to reach the cytoplasmic membrane, as
proposed for the two isoforms, temporin A and tem-
porin B [72]. In contrast, the highly active temporin L
disaggregates partially when in contact with LPS and,
therefore, it should be easier for this peptide to tra-
verse the LPS leaflet into the target inner membrane
[72]. Spectroscopic measurements have suggested that
temporins A and B bind mostly to those portions of
LPS facing the solution and not to those in proximity
with the inner lipid moiety, as found for temporin L,
which is able to penetrate well into the hydrophobic
region of LPS [69]. The inactivity of temporins A and B
on Gram-negative strains is in line with recent findings
suggesting that oligomerization of AMPs causes a dra-
matic reduction in their anti-microbial activity because
of their larger size, which makes it more difficult the dif-
fusion of the peptides through the cell wall [79]. Besides
its ability to bind LPS, temporin L has also an in vivo
capacity to prevent lethality in rat models of E. coli sep-
tic shock, by means of endotoxin neutralization [69]. It
is known that during or after antibiotic therapy, LPS are
released from the cell envelope of Gram-negative bac-
teria and activate a cascade of uncontrolled systemic
inflammatory responses leading to organ failure and
death. According to this, it is becoming of great interest
to discover new compounds able to simultaneously kill
bacteria and neutralize endotoxin effects [80].

Recent analyses of the molecular mechanism under-
lying the synergistic action between temporin isoforms

against Gram-negative bacteria have demonstrated that
it differs from that already described for the maga-
inin/PGLa pair, which is explained by the increasing
perturbation of the cytoplasmic membrane [81,82]. In
the case of temporins, the synergism takes place at the
level of the outer membrane, and is associated with the
ability of temporin L in hampering temporins A and B
aggregation (Figure 1). This should promote the peptide
translocation across the outer leaflet, allowing them to
easily get into the inner membrane and perturb it. These
data represent the first example proving how peptides
synergize to overcome bacterial resistance imposed by
the physical barrier of LPS.

Several reports on temporins have pointed out that
although their killing mechanism involves alteration
of the cytoplasmic membrane permeability in a dose-
dependent manner, without destroying cell integrity,
membrane permeation is not per se the lethal event [83].
Altogether, it cannot be excluded that these peptides act
in vivo in a more complex way, e.g. inhibiting metabolic
functions [84,85].

As indicated in Table 1, temporins A and B are mildly
cationic peptides, carrying only a single basic amino
acid (arginine or lysine). This finding, and the fact that
electrostatic interactions between these peptides and
the negatively charged components of the cell surface
of Leishmania promastigotes (i.e. the highly anionic
lipophosphoglycan (LPG) [86–88]) do not play a crucial
role in their anti-parasitic action [71], might contribute
to the capability of temporins to also target amastigotes,
which lack in an anionic LPG layer [86]. This is in

Figure 1 A possible mechanism for the synergism between
temporin A and temporin L. The synergistic effect between the
two peptides takes place at the level of the lipopolysaccharide
layer of Gram-negative bacteria and is related to the ability
of temporin L to interfere with the oligomerization process of
temporin A, when in contact with LPS, and to assist it in
traversing the LPS layer.
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Table 2 Sequences of bombinins H and bombinin H-related peptides

Peptide Frog species Sequence Reference

Bombinin H1 B. variegata IIGPVLGMVGSALGGLLKKI-NH2 [36]
Bombinin H2 B. bombina, B. variegata IIGPVLGLVGSALGGLLKKI-NH2 [34, 36, 89]
Bombinin H3 B. variegata IIGPVLGMVGSALGGLLKKI-NH2 [36]
Bombinin H4 B. bombina, B. variegata IIGPVLGLVGSALGGLLKKI-NH2 [34, 36, 89]

Bombinin H6 B. bombina, B. orientalis ILGPILGLVSNALGGLL----NH2 [24, 89]
Bombinin H7 ” ILGPILGLVSNALGGLL----NH2 [24, 89]

a GH-1
a GH-2

B. orientalis IIGPVLGLVGKPLESLLE [27]
” ILGPVLDLVGRALRGLLKKI-NH2 [90]

Maximin H1 B. maxima ILGPVISTIGGVLGGLLKNL-NH2 [91]
Maximin H2 ” ILGPVLSMVGSALGGLIKKI-NH2 [91]
Maximin H3 ” ILGPVLGLVGNALGGLIKKI-NH2 [91]
Maximin H4 ” ILGPVISKIGGVLGGLLKNL-NH2 [91]

Basic and acidic residues are indicated by red and blue letters, respectively. Italicised letters within
green boxes indicate D-amino acids. Gaps (-) are inserted to maximize identities.
a, Peptide sequence deduced from gene.

contrast with what found for the majority of highly
cationic peptides.

BOMBININS H

Discovery and Structural Features

The term bombinins H refers to a family of 17–20-
residue hydrophobic AMPs, isolated from the skin
secretions of frogs belonging to the Bombina genus such
as B. bombina, B. orientalis and B. variegata (Table 2).
All bombinins H are amidated at the C-terminus and
adopt an amphipathic α-helical structure in membrane-
mimicking environments [35]. Their existence was
predicted from the cDNA sequences encoding the
precursors of longer anti-microbial peptides, named
bombinins (25–27 amino acids), previously detected in
the skin secretions of B. orientalis and B. variegata
[33,34]. Different from the precursors of other AMPs,
these preproproteins include the information for one
or two identical copies of a bombinin-like peptide
(BLP), and a single copy of a bombinin H-like peptide,
separated by acidic intervening sequences. Noteworthy,
BLP mRNAs have also been identified in Bombina brain
and stomach [33], suggesting their function in the
central nervous system and gastrointestinal tract.

Bombinins H1–H4 (20-residues long) are weakly
cationic peptides (net charge +3 at neutral pH, because
of two lysines at the carboxyl end) and differ by one
or two amino acids (Table 2). The most surprising
outcome is the presence of a D-alloisoleucine at the
second N-terminal position of some of them, as a
consequence of post-translational modification of the
respective gene-encoded L-isoleucine (there is no codon

for a D-amino acid [92,93]), where the chirality of the
α-carbon is changed (Table 2). The enzyme responsible
for this L- to D-isomerization has been purified and
characterized from skin secretions of B. variegata [94].
Two shorter (17-residues), more hydrophobic and less
cationic forms of bombinins H (Table 2, H6 and H7, net
charge +1) were isolated from B. orientalis. They lack
the lysine-lysine-isoleucine motif at the C-terminus and
differ one from each other by only the configuration of
the second residue (an L- or D-leucine for H6 and H7,
respectively).

On the basis of the sequences of two bombinin
genes from B. orientalis, two additional bombinin H-
like peptides were predicted, GH1 and GH2, but they
were never found directly in the skin secretion [27,90].
Moreover, series of bombinin H-related peptides,
termed maximins H, have been isolated from skin
glands of the chinese red belly toad Bombina maxima.
However, the presence of a D-amino acid has not been
mentioned [91]. Their sequences are also shown in
Table 2.

The existence of a D-amino acid in ribosomally
made peptides of animal origin was first detected in
dermorphin and delthorphins, opioid peptides from the
skin of South American frogs Phyllomedusa sauvagei
and Phyllomedusa bicolor [95,96], and later in other
neuropeptides and toxins from invertebrates [97–100].
Although such a modification has already been
described for bacterial and fungal AMPs [93], bombinins
H represent the first example of natural AMPs bearing a
single D-amino acid, deriving from a post-translational
isomerization, and coexisting with the corresponding,
but less abundant, all-L counterparts [36]. Actually,
in contrast with opiates, where the all L-isoform is
apparently not detectable as a mature peptide and is
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Figure 2 Effect of bombinins H on the viability and morphology of Leishmania parasites. Panel A: Anti-parasitic activity. The
inhibition of MTT reduction in L. donovani promastigotes (upper graph) and L. pifanoi amastigotes (lower graph), caused by H2
(closed symbols) or H4 (empty symbols) was measured either immediately after peptide incubation (squares), or after allowing
the surviving parasites to proliferate (circles), as explained in Mangoni et al. [103]. MTT reduction to insoluble formazan by
mitochondrial reductases is used as a viability parameter of the parasites. Data are expressed as means ± standard deviations.
Panel B: Transmission Electron Microscopy images of Leishmania protozoa after peptide treatment. Leishmania donovani
promastigotes and Leishmania pifanoi amastigotes were incubated for 1 h under standard conditions with bombinins H2 and H4
at the equipotent concentrations causing approximately 80% or 30% killing of promastigotes or amastigotes, respectively. The
values of the peptide concentrations were determined according to the results reported in panel A. Parasites were then fixed for
1 h with 5% (w/v) glutaraldehyde in phosphate buffered saline, containing 2.5% (w/v) osmium tetraoxide, gradually dehydrated
in ethanol and propylene oxide. Membrane disruption, membrane blebbing and breakages as well as depletion of electron-dense
cytoplasmic material can be observed for both peptides (Bar = 0.5 µm). Taken from Ref. [103].

completely inactive (the occurrence of D-amino acids
is essential for the interaction with opioid receptors),
the all L-bombinins H are considerably active, although
with a different potency and cell selectivity from that
of the corresponding D-amino acid-containing isoforms
(see below).

Biological Activity

The anti-microbial activity of bombinins H and their
mechanisms of action were investigated mainly for
the two pairs of diastereomers, bombinins H2/H4 and
bombinins H6/H7. Each pair includes an all L-isomer
(H2 and H6) and the corresponding D-amino acid-
containing peptide, H4 and H7 (Table 2). The anti-
bacterial and anti-yeast activities were tested using
the inhibition zone assay on agarose plates, and
expressed as lethal concentration (LC), the lowest
peptide concentration inhibiting microbial growth [101].
As shown in Table 3, in which temporin L is included
as reference, only the more cationic H2 and H4
display anti-microbial activity against the selected
microorganisms, with the exception of A. hydrophila
Bo-3N, a member of B. orientalis natural flora [35].
In all cases, H2 is less potent than H4, whose LC
values are approximately 2–3-fold higher and 2-fold
lower than those of temporin L against bacterial and
Candida species, respectively (Table 3). The anti-fungal
activity toward Phytophthora nicotianae spores was also

carried out, and a minimal fungistatic concentration
corresponding to 18, 10 and 16 µM, was found for
H2, H4 and temporin L, respectively [102]. Rate of
killing experiments, which were performed at high
ionic strength such as phosphate buffered saline, have
revealed that the pair H2/H4 expresses higher activity
on Gram-positive bacteria, in agreement with their LC
values, and with a faster killing kinetic for the D-amino
acid-containing peptide [35]. Surprisingly, H7 appears
to be the best bactericidal isoform against A. hydrophila
Bo-3N, which is thought to be its natural target [35].
Since a dansylated derivative of this peptide (net charge
0 at neutral pH) maintains the same trend of activity,
the single positive charge of H7 is not an essential
element for its anti-microbial action.

Bombinins H are also lethal to promastigotes
and amastigotes of Leishmania parasites with LC50

values significantly lower for H4 (Figure 2) [103]. The
effectiveness of H4, which is better than that of H2,
mirrors the disparity previously described for their
bactericidal action [35].

Regarding the hemolytic activity of bombinins H
against human erythrocytes, the all-L H6 is the most
active one [35]. On the contrary, within the pair H2/H4,
the D-amino acid-containing H4 is more hemolytic
at concentrations above 15 µM (Table 3). Note, a
remarkable hemolysis is manifested by maximins H
[91].
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Table 3 Anti-bacterial and haemolytic activities of bombinins
H and temporin L

Microorganism H2 H4 H6 H7 Temp
L

Lethal concentration (µM)
Gram-negative bacteria
Escherichia coli D21 21.4 4.7 NA NA 1.5
Escherichia coli D22 4.4 3.1 NA NA 0.7
Yersinia pseudotuberculosis
YPIII

7.3 2.0 NA NA 0.7

Pseudomonas syringae pv
tabaci

32.0 8.2 NA NA 3.0

Aeromonas hydrophila
Bo-3N

NA NA NA NA NA

Enterobacter agglomerans
Bo-1S

30.0 11.3 NA NA NA

Gram-positive bacteria
Bacillus megaterium Bm11 1.4 0.8 NA 25 0.3
Staphylococcus aureus
Cowan I

4.7 3.0 NA NA 0.5

Staphylococcus lentus 2.0 0.6 NA NA 0.2
Micrococcus luteus 2.0 0.2 NA NA 0.3
Yeasts
Candida albicans ATCC
10 231

3.1 1.6 NA NA 2.7

Candida guiller-mondii 1.3 0.7 NA NA 1.8
Candida tropicalis 1.1 0.6 NA NA 1.0

% Haemolysis at 15 µM 11.0 28.0 78.0 20.0 90.0

NA, not active.
Data taken from Refs. 35,102.

Mode of action studies and the effect of L-to D-amino
acid conversion on the biophysical properties of
bombinins H

Mode of action studies on intact bacteria have indi-
cated that bombinins H alter the permeability of the
target cell membrane, triggering leakage of large cytoso-
lic components (e.g. proteins in the case of H2/H4)
or diffusion of smaller molecules through local mem-
brane disruptions (H7) [35]. Despite of growing efforts
to gain an insight into the anti-bacterial activity and
mechanism of action of AMPs against bacteria, only
a few of them have been tested so far against Leish-
mania, and very little has been determined about the
parameters contributing to this activity. Yet, similar
to temporins A and B, bombinins H2 and H4 rapidly
perturb the parasite’s membrane with a pronounced
blebbing and loss of intracellular material (Figure 2).
The extent of membrane permeation correlates with
the peptide concentration used and with the inhibition
of parasite proliferation [103]. To shed light into the
biophysical basis accounting for the quantitative dis-
crepancies between the two diastereomers, the peptide’s
structure in membranes mimicking those of mammals,
bacteria and Leishmania promastigotes was analysed

using ATR-FITR and CD spectroscopies. These studies
revealed that: (i) a D-amino acid in the second posi-
tion does not destabilize the α-helical content of the
peptide and (ii) H2 adopts β-sheet aggregates specifi-
cally in the promastigote’s mimicking membranes. In
addition, surface plasmon resonance measurements
have shown a lower binding affinity to the Leishma-
nia model membrane for H2 than H4, according to
its lower hydrophobicity, as estimated using reverse-
phase HPLC [36]. Although the reason is not yet clear,
the formation of aggregated strands by H2 and its
weaker membrane-binding affinity could contribute to
the reduction of the anti-parasitic activity of this peptide
compared to H4.

It is well known that inclusion of D-amino acids in
the sequence of AMPs makes them more resistant to
enzymatic degradation and serum clearance. However,
as highlighted by Mangoni et al. [103], a difference
in the susceptibility to proteolysis is not the reason
for the different activities of the two isomers against
Leishmania.

In summary, a single natural L-to D-amino acid
substitution stands for a new approach developed by
Nature to modulate not only the peptide bioavailability
(e.g. higher solubility) and biostability (i.e. protection
from proteolytic degradation) but also the peptide’s
biophysical properties (e.g. hindering its oligomeric
state) to make it as a more potent weapon against
microbes.

CONCLUDING REMARKS

Temporins and bombinins H are among the shortest
and mild cationic (net charge ranging from 0 to +3)
amphipathic α-helical AMPs found in Amphibia to
date. Beside their anti-microbial activity, other func-
tions, such as the ability to mediate protection against
endotoxic shock [69] and to promote chemotaxis and
prophylaxis against infections, have been delineated
for temporins in animal models [104,105]. Further-
more, the control mechanism governing the expression
of gene-encoded AMPs in Rana and Bombina is similar
to that involved in the regulation of mammalian inflam-
matory genes, and has a common signal transduction
cascade. Therefore, these two families of AMPs repre-
sent fascinating molecules to expand our knowledge
on the immunomodulatory role of skin AMPs in the
innate defence system of vertebrates, their regulation,
and further physiological functions. In addition, both
temporins and bombinins H are provided with funda-
mental features to assist the design of new antibiotics:
(i) they are short-length peptides allowing a readily
cost-efficient chemical production, without compromis-
ing the peptide’s pharmacological value by means of
a reduction in size; (ii) they are fast membrane-active
AMPs against a broad range of pathogens (bacteria,
yeasts, filamentous fungi, viruses and protozoa) at
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concentrations not lytic towards normal mammalian
cells and (iii) they retain good activity in 33% human
serum and in physiological salt concentration. Yet, their
in vivo efficacy and therapeutic index have not been
examined in depth and studies along this line are in
progress.

Finally, the synergistic effect between short and
homologue AMPs to overcome resistance due to the
LPS protective layer of Gram-negative strains and
the stronger anti-microbial activity of D-amino acid-
containing peptides, made by Nature, might suggest
innovative and viable strategies for the development
and manufacture of new peptide-based anti-infective
medical preparations.
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